Noninvasive measurements of the membrane potential and GABAergic action in hippocampal interneurons.

نویسندگان

  • J A Verheugen
  • D Fricker
  • R Miles
چکیده

Neurotransmitters affect the membrane potential (Vm) of target cells by modulating the activity of receptor-linked ion channels. The direction and amplitude of the resulting transmembrane current depend on the resting level of Vm and the gradient across the membrane of permeant ion species. Vm, in addition, governs the activation state of voltage-gated channels. Knowledge of the exact level of Vm is therefore crucial to evaluate the nature of the neurotransmitter effect. However, the traditional methods to measure Vm, with microelectrodes or the whole-cell current-clamp technique, have the drawback that the recording pipette is in contact with the cytoplasm, and dialysis with the pipette solution alters the ionic composition of the interior of the cell. Here we describe a novel technique to determine the Vm of an intact cell from the reversal potential of K+ currents through a cell-attached patch. Applying the method to interneurons in hippocampal brain slices yielded more negative values for Vm than subsequent whole-cell current-clamp measurements from the same cell, presumably reflecting the development of a Donnan potential between cytoplasm and pipette solution in the whole-cell mode. Cell-attached Vm measurements were used to study GABAergic actions in intact CA1 interneurons. In 1- to 3-week-old rats, bath-applied GABA inhibited these cells by stabilizing Vm at a level depending on contributions from both GABAA and GABAB components. In contrast, in 1- to 4-d-old animals, only GABAA receptors were activated resulting in a depolarizing GABA response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...

متن کامل

O7: Functional Characterization of Human GABAA Autoantibodies in the Context of Limbic Encephalitis

Limbic encephalitis is an adaptive autoimmune disease, induced by different autoantibodies, which target extracellular neuronal epitopes, such as NMDA or GABAB receptors1,2. Recently our group found another human antibody, which binds to the α1 subunit of the GABAA receptor. Since the GABAA receptor is responsible for the majority of fast inhibitory neurotransmission, we investigated chan...

متن کامل

Novel GABAergic circuits mediating excitation/inhibition of Cajal-Retzius cells in the developing hippocampus.

Cajal-Retzius cells are a class of neurons believed to play critical roles during cortical development. However, their network computational functions remain poorly understood. Although work in the neocortex and hippocampus has shown that Cajal-Retzius cells receive predominantly, if not exclusively, spontaneous GABA(A) receptor-mediated input, the cellular sources originating these events rema...

متن کامل

Dopamine excites fast-spiking interneurons in the striatum.

The striatum is the main recipient of dopaminergic innervation. Striatal projection neurons are controlled by cholinergic and GABAergic interneurons. The effects of dopamine on projection neurons and cholinergic interneurons have been described. Its action on GABAergic interneurons, however, is still unknown. We studied the effects of dopamine on fast-spiking (FS) GABAergic interneurons in vitr...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 7  شماره 

صفحات  -

تاریخ انتشار 1999